skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "LIBESKIND-HADAS, RAN"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Singh, M (Ed.)
    Discrete optimization problems arise in many biological contexts and, in many cases, we seek to make inferences from the optimal solutions. However, the number of optimal solutions is frequently very large and making inferences from any single solution may result in conclusions that are not supported by other optimal solutions. We describe a general approach for efficiently (polynomial time) and exactly (without sampling) computing statistics on the space of optimal solutions. These statistics provide insights into the space of optimal solutions that can be used to support the use of a single optimum (e.g., when the optimal solutions are similar) or justify the need for selecting multiple optima (e.g., when the solution space is large and diverse) from which to make inferences. We demonstrate this approach on two well-known problems and identify the properties of these problems that make them amenable to this method. 
    more » « less
  2. Abstract To understand genome evolution in a group of microbes, we need to know the timing of events such as duplications, deletions and horizontal transfers. A common approach is to perform a gene-tree / species-tree reconciliation. While a number of software packages perform this type of analysis, none are geared toward a complete reconstruction for all families in an entire clade. Here we describe an update to the xenoGI software package which allows users to perform such an analysis using the newly developed DTLOR (duplication-transfer-loss-origin-rearrangement) reconciliation model starting from genome sequences as input. 
    more » « less
  3. Carbone, Alessandra; El-Kebir, Mohammed (Ed.)
    The maximum parsimony phylogenetic reconciliation problem seeks to explain incongruity between a gene phylogeny and a species phylogeny with respect to a set of evolutionary events. While the reconciliation problem is well-studied for species and gene trees subject to events such as duplication, transfer, loss, and deep coalescence, recent work has examined species phylogenies that incorporate hybridization and are thus represented by networks rather than trees. In this paper, we show that the problem of computing a maximum parsimony reconciliation for a gene tree and species network is NP-hard even when only considering deep coalescence. This result suggests that future work on maximum parsimony reconciliation for species networks should explore approximation algorithms and heuristics. 
    more » « less
  4. BackgroundAnalyses of microbial evolution often use reconciliation methods. However, the standard duplication-transfer-loss (DTL) model does not account for the fact that species trees are often not fully sampled and thus, from the perspective of reconciliation, a gene family may enter the species tree from the outside. Moreover, within the genome, genes are often rearranged, causing them to move to new syntenic regions. ResultsWe extend the DTL model to account for two events that commonly arise in the evolution of microbes:originof a gene from outside the sampled species tree andrearrangementof gene syntenic regions. We describe an efficient algorithm for maximum parsimony reconciliation in this new DTLOR model and then show how it can be extended to account for non-binary gene trees to handle uncertainty in gene tree topologies. Finally, we describe preliminary experimental results from the integration of our algorithm into the existing xenoGI tool for reconstructing the histories of genomic islands in closely related bacteria. ConclusionsReconciliation in the DTLOR model can offer new insights into the evolution of microbes that is not currently possible under the DTL model. 
    more » « less
  5. null (Ed.)
    For a decade, our institution has offered both a biology-based CS1 (CS1-B) and a traditional, breadth-based CS1. This project follows the paths of students in both courses -- tracking their subsequent interests (what courses do the two groups choose afterwards') and their grades in those courses. Within the biology-based cohort, we also contrast the futures of the students who chose a biology-themed introduction with the group who expressed no preference or requested the breadth-based approach. Even when student preference was not accommodated, equitable downstream performance results hold. We discuss the implications of these results, including the possibility that, like introductory writing, introductory computing is a professional literacy in which many disciplines have a stake. 
    more » « less
  6. Russell, Schwartz (Ed.)
    Abstract Summary We describe eMPRess, a software program for phylogenetic tree reconciliation under the duplication-transfer-loss model that systematically addresses the problems of choosing event costs and selecting representative solutions, enabling users to make more robust inferences. Availability and implementation eMPRess is freely available at http://www.cs.hmc.edu/empress. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less